Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666591

RESUMO

The cuticle, consisting of cuticular wax and cutin, is a lipid membrane that seals the plant surface against environmental stress. ß-Ketoacyl-CoA synthases (KCSs) are condensing enzymes catalyzing crucial reactions elongating hydrocarbon chains into precursors for various cuticular wax components. Although many KCS genes were well characterized in various species, the functions of the closely related Arabidopsis KCS3, KCS12, KCS19 enzymes remained unclear. Here, we found KCS3 preferentially expressed in growing organs, especially in guard cells. kcs3 mutants and kcs3kcs12 double mutants displayed sepal fusion phenotypes, suggesting defects in cuticle formation. The mutants had decreased amounts of wax components with relatively short hydrocarbon chains in the developing organs but increased levels of wax compounds in mature organs. In contrast, kcs19 mutants showed seed fusion phenotypes and altered chain length distributions in seed suberin. Taken together, our results show that KCS12 and KCS3 share redundant functions in flower development, while KCS19 is involved in seed coat formation. All three condensing enzymes are involved in the elongation of C>18 hydrocarbon chains in young, actively expanding tissues.

2.
Science ; 383(6678): 108-113, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38175904

RESUMO

Composite traits involve multiple components that, only when combined, gain a new synergistic function. Thus, how they evolve remains a puzzle. We combined field experiments, microscopy, chemical analyses, and laser Doppler vibrometry with comparative phylogenetic analyses to show that two carnivorous Nepenthes pitcher plant species independently evolved similar adaptations in three distinct traits to acquire a new, composite trapping mechanism. Comparative analyses suggest that this new trait arose convergently through "spontaneous coincidence" of the required trait combination, rather than directional selection in the component traits. Our results indicate a plausible mechanism for composite trait evolution and highlight the importance of stochastic phenotypic variation as a facilitator of evolutionary novelty.


Assuntos
Adaptação Biológica , Evolução Biológica , Planta Carnívora , Caryophyllales , Herança Multifatorial , Filogenia , Planta Carnívora/classificação , Planta Carnívora/genética , Caryophyllales/classificação , Caryophyllales/genética , Adaptação Biológica/genética
3.
New Phytol ; 241(1): 430-443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920109

RESUMO

Metacaspases (MCs) are structural homologs of mammalian caspases found in plants, fungi, and protozoa. Type-I MCs carry an N-terminal prodomain, the function of which is unclear. Through genetic analysis of Arabidopsis mc2-1, a T-DNA insertion mutant of MC2, we demonstrated that the prodomain of metacaspase 2 (MC2) promotes immune signaling mediated by pattern-recognition receptors (PRRs). In mc2-1, immune responses are constitutively activated. The receptor-like kinases (RLKs) BAK1/BKK1 and SOBIR1 are required for the autoimmune phenotype of mc2-1, suggesting that immune signaling mediated by the receptor-like protein (RLP)-type PRRs is activated in mc2-1. A suppressor screen identified multiple mutations in the first exon of MC2, which suppress the autoimmunity in mc2-1. Further analysis revealed that the T-DNA insertion at the end of exon 1 of MC2 causes elevated expression of the MC2 prodomain, and overexpression of the MC2 prodomain in wild-type (WT) plants results in the activation of immune responses. The MC2 prodomain interacts with BIR1, which inhibits RLP-mediated immune signaling by interacting with BAK1, suggesting that the MC2 prodomain promotes plant defense responses by interfering with the function of BIR1. Our study uncovers an unexpected function of the prodomain of a MC in plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais
4.
Nat Commun ; 14(1): 7284, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949901

RESUMO

The surface coatings of cereal plants are dominated by waxy ß-diketones crucial for drought resistance and, therefore, grain yield. Here, barley (Hordeum vulgare) wax analyses reveal ß-diketone and associated 2-alkanol ester profiles suggesting a common C16 3-ketoacid precursor. Isotope analysis further shows that the major (C31) diketone is synthesized from two plastidial C16 acyl units. Previous studies identified a gene cluster encoding enzymes responsible for ß-diketone formation in barley, but left their biochemical functions unknown. Various assays now characterize one of these enzymes as a thioesterase producing long-chain (mainly C16) 3-ketoacids, and another one as a polyketide synthase (PKS) condensing the 3-ketoacids with long-chain (mainly C16) acyl-CoAs into ß-diketones. The two enzymes are localized to the plastids and Endoplasmic Reticulum (ER), respectively, implying substrate transfer between these two sub-cellular compartments. Overall, our findings define a two-step pathway involving an unprecedented PKS reaction leading directly to the ß-diketone products.


Assuntos
Hordeum , Policetídeo Sintases , Policetídeo Sintases/genética , Hordeum/genética , Hordeum/metabolismo , Cetonas/metabolismo
5.
Soft Matter ; 19(36): 7020-7032, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37676239

RESUMO

Novel superhydrophobic coatings, that are both biodegradable and biosourced, have the potential to revolutionize the water-repellent coating industry. Here, water-repellent coatings were prepared from commercially unavailable plant waxes, isolated using solvent extraction and characterized using DSC, GC-MS and DLS. In the first stage, a plant survey was conducted to identify an ideal plant source for the final spray, in which Whatman filter paper was submerged in a wax-solvent solution with recrystallization occurring upon air-drying. In the second stage, aqueous, PFC-free wax dispersions were prepared, coated onto textiles (cotton and polyester), and heat-treated with a home drying machine to allow for the spreading and recrystallization of the waxes. In both stages, SEM visualization verified the coating's morphology, and contact angle measurements showed them to be superhydrophobic. It was concluded that, using less coating material than commercial coatings, high-performing petroleum-free coatings could be made and applied onto textiles of various polarities.

6.
Plant Physiol Biochem ; 198: 107679, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37121165

RESUMO

Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.


Assuntos
Allium , Ceras , Ceras/metabolismo , Cebolas/genética , Cebolas/metabolismo , Allium/metabolismo , Álcoois/análise , Álcoois/química , Álcoois/metabolismo , Folhas de Planta/metabolismo , Cetonas/análise , Cetonas/química , Cetonas/metabolismo , Carbono/metabolismo
7.
Planta ; 257(4): 74, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879182

RESUMO

MAIN CONCLUSION: The alpine meadow plants showed great intra- and inter-genera variations of chemical profiles of cuticular waxes. Developing an understanding of wax structure-function relationships that will help us tackle global climate change requires a detailed understanding of plant wax chemistry. The goal in this study was to provide a catalog of wax structures, abundances, and compositions on alpine meadow plants. Here, leaf waxes from 33 plant species belonging to 11 families were sampled from alpine meadows of the east side of the Qinghai-Tibet Plateau. Across these species, total wax coverage varied from 2.30 µg cm-2 to 40.70 µg cm-2, showing variation both within as well as between genera and suggesting that wax variation is subject to both environmental and genetic effects. Across all wax samples, more than 140 wax compounds belonging to 13 wax compound classes were identified, including both ubiquitous wax compounds and lineage-specific compounds. Among the ubiquitous compounds (primary alcohols, alkyl esters, aldehydes, alkanes, and fatty acids), chain length profiles across a wide range of species point to key differences in the chain length specificity of alcohol and alkane formation machinery. The lineage-specific wax compound classes (diols, secondary alcohols, lactones, iso-alkanes, alkyl resorcinols, phenylethyl esters, cinnamate esters, alkyl benzoates, and triterpenoids) nearly all consisted of isomers with varying chain lengths or functional group positions, making the diversity of specialized wax compounds immense. The comparison of species relationships between chemical data and genetic data highlighted the importance of inferring phylogenetic relationships from data sets that contain a large number of variables that do not respond to environmental stimuli.


Assuntos
Aldeídos , Pradaria , Filogenia , Tibet , Alcanos , Ésteres
8.
Plant Physiol ; 186(4): 1812-1831, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33890667

RESUMO

Monounsaturated alkenes are present in the cuticular waxes of diverse plants and are thought to play important roles in their interactions with abiotic and biotic factors. Arabidopsis (Arabidopsis thaliana) leaf wax has been reported to contain alkenes; however, their biosynthesis has not been investigated to date. Here, we found that these alkenes have mainly ω-7 and ω-9 double bonds in characteristically long hydrocarbon chains ranging from C33 to C37. A screening of desaturase-deficient mutants showed that a single desaturase belonging to the acyl-CoA desaturase (ADS) family, previously reported as ADS4.2, was responsible for introducing double bonds en route to the wax alkenes. ADS4.2 was highly expressed in young leaves, especially in trichomes, where the alkenes are known to accumulate. The enzyme showed strong activity on acyl substrates longer than C32 and ω-7 product regio-specificity when expressed in yeast (Saccharomyces cerevisiae). Its endoplasmic reticulum localization further confirmed that ADS4.2 has access to very-long-chain fatty acyl-CoA substrates. The upstream biosynthesis pathways providing substrates to ADS4.2 and the downstream reactions forming the alkene products in Arabidopsis were further clarified by alkene analysis of mutants deficient in other wax biosynthesis genes. Overall, our results show that Arabidopsis produces wax alkenes through a unique elongation-desaturation pathway, which requires the participation of ADS4.2.


Assuntos
Alcenos/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Graxos Dessaturases/genética , Folhas de Planta/química , Ceras/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Ceras/química
9.
Plant Physiol Biochem ; 163: 285-295, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33887646

RESUMO

Cuticular wax and cutin are directly involved in the mechanisms by which plants acclimate to water-limited environments. However, how the two lipid forms balance their contributions to plant drought-tolerance is still not clear. The present study examined the responses of cutin monomers and cuticular waxes to drought stress in two sorghum (Sorghum bicolor (L.) Moench) cultivars, drought-tolerant cv. Kangsi and drought-sensitive cv. Hongyingzi, by combining lipidomic and transcriptomic analysis. Drought increased total cutin contents by 41.3%, the contents of alkanoic acids by 72.6% and 2-hydroxyacids by 117.8% in Kangsi but unchanged those in Hongyingzi. The abundance of cutin monomers were relatively stable for cv Hongyingzi, excepting for a decrease of ω-hydroxyacids from 35.0% to 27.4% in drought-stressed plants. However, for cv Kangsi, the abundance of ω-hydroxyacids decreased from 36.8% to 21.0% and that of alkanoic acids increased from 30.5% to 37.1% in drought-stressed plants. Drought increased total wax coverage in Hongyingzi but reduced it in Kangsi. However, the abundance of aldehydes decreased from 51.2% to 39.3% in drought-stressed cv Kangsi, but increased from 25.2% to 36.1% in drought-stressed cv Hongyingzi. A decrease of sterols (by 76%) and an increase of primary alcohol (by 443%) was also observed in drought-stressed cv Hongyingzi. Transcriptome analysis also revealed that many genes implicated by homology in cutin monomer and cuticular wax biosynthesis also differed in their responses to drought stress between the two sorghum cultivars. Therefore, sorghum cultivars differed in their mechanisms in adjusting chemical profiles of both cutin and cuticular wax under water deficit condition.


Assuntos
Sorghum , Secas , Regulação da Expressão Gênica de Plantas , Lipidômica , Folhas de Planta , Sorghum/genética , Transcriptoma , Ceras
10.
Plant J ; 106(5): 1468-1483, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33768632

RESUMO

Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.


Assuntos
Aldeído Oxirredutases/metabolismo , Brachypodium/genética , Álcoois Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/biossíntese , Aldeído Oxirredutases/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Brachypodium/enzimologia , Brachypodium/fisiologia , Edição de Genes , Técnicas de Inativação de Genes , Mutação com Perda de Função , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Poliésteres/metabolismo , Estresse Fisiológico , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/fisiologia
11.
Plant Cell ; 32(12): 4002-4016, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037144

RESUMO

The plant defense hormone salicylic acid (SA) is perceived by two classes of receptors, NPR1 and NPR3/NPR4. They function in two parallel pathways to regulate SA-induced defense gene expression. To better understand the roles of the SA receptors in plant defense, we systematically analyzed their contributions to different aspects of Arabidopsis (Arabidopsis thaliana) plant immunity using the SA-insensitive npr1-1 npr4-4D double mutant. We found that perception of SA by NPR1 and NPR4 is required for activation of N-hydroxypipecolic acid biosynthesis, which is essential for inducing systemic acquired resistance. In addition, both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are severely compromised in the npr1-1 npr4-4D double mutant. Interestingly, the PTI and ETI attenuation in npr1-1 npr4-4D is more dramatic compared with the SA-induction deficient2-1 (sid2-1) mutant, suggesting that the perception of residual levels of SA in sid2-1 also contributes to immunity. Furthermore, NPR1 and NPR4 are involved in positive feedback amplification of SA biosynthesis and regulation of SA homeostasis through modifications including 5-hydroxylation and glycosylation. Thus, the SA receptors NPR1 and NPR4 play broad roles in plant immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Imunidade Vegetal , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosilação , Homeostase , Hidroxilação , Mutação , Transdução de Sinais
12.
PeerJ ; 8: e9264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547878

RESUMO

BACKGROUND: Cuticular waxes cover plant surface and play important roles in protecting plants from abiotic and biotic stresses. The variations of wax deposition and chemical compositions under changing environments have been shown to be related to plant adaptations. However, it is still not clear whether the wax depositions could be adjusted to increase plant adaptations to stressed conditions. METHODS: In this study, exogenous methyl jasmonate (MeJA), the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and salicylic acid (SA) were applied to test their effects on cuticular wax deposition in two Brassica napus cultivars, Zhongshuang 9 (ZS9, low wax coverage ) and Yuyou 19 (YY19, high wax coverage). Next, we measured the water loss rate and the transcriptional expression of genes involved in wax biosynthesis as well as genes related to disease defense. RESULTS: Seven wax compound classes, including fatty acids, aldehydes, alkanes, secondary alcohols, ketones, and unbranched as well as branched primary alcohols, were identified in B. napus leaf wax mixtures. MeJA, SA and ACC treatments had no significant effect on total wax amounts in YY19, whereas ACC reduced total wax amounts in ZS9. Overall, hormone treatments led to an increase in the amounts of aldehydes and ketones, and a decrease of secondary alcohol in ZS9, whereas they led to a decrease of alkane amounts and an increase of secondary alcohol amounts in YY19. Concomitantly, both cultivars also exhibited different changes in cuticle permeability, with leaf water loss rate per 15 min increased from 1.57% (averaged across treatments) at 1.57% (averaged across treatments) at 15 min to 3.12% at 30 min for ZS9 (except for ACC treated plant) and decreased for YY19. MeJA-treated plants of both cultivars relatively had higher water loss rate per 15 min when compared to other treatments. Conclusion. Our findings that B. napus leaf wax composition and cuticle permeability are altered by exogenous SA, MeJA and ACC suggest that the hormone treatments affect wax composition, and that the changes in wax profiles would cause changes in cuticle permeability.

13.
Sci Rep ; 10(1): 8011, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415159

RESUMO

Cork is a water-impermeable, suberin-based material harboring lignin, (hemi)cellulose, and extractable small molecules (primarily triterpenoids). Extractables strongly influence the properties of suberin-based materials. Though these previous findings suggest a key role for triterpenoids in cork material quality, directly testing this idea is hindered in part because it is not known which genes control cork triterpenoid biosynthesis. Here, we used gas chromatography and mass spectrometry to determine that the majority (>85%) of non-polar extractables from cork were pentacyclic triterpenoids, primarily betulinic acid, friedelin, and hydroxy-friedelin. In other plants, triterpenoids are generated by oxidosqualene cyclases (OSCs). Accordingly, we mined Quercus suber EST libraries for OSC fragments to use in a RACE PCR-based approach and cloned three full-length OSC transcripts from cork (QsOSC1-3). Heterologous expression in Saccharomyces cerevisiae revealed that QsOSC1-3 respectively encoded enzymes with lupeol synthase, mixed α- and ß-amyrin synthase, and mixed ß-amyrin and friedelin synthase activities. These activities together account for the backbone structures of the major cork triterpenoids. Finally, we analyzed the sequences of QsOSC1-3 and other plant OSCs to identify residues associated with specific OSC activities, then combined this with analyses of Q. suber transcriptomic and genomic data to evaluate potential redundancies in cork triterpenoid biosynthesis.


Assuntos
Transferases Intramoleculares/metabolismo , Quercus/metabolismo , Triterpenos/metabolismo , Vias Biossintéticas , Biologia Computacional/métodos , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Estrutura Molecular , Quercus/genética , Relação Estrutura-Atividade , Triterpenos/química
14.
Plant J ; 102(6): 1294-1312, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31981252

RESUMO

Alkylresorcinols are bioactive compounds produced in diverse plant species, with chemical structures combining an aliphatic hydrocarbon chain and an aromatic ring with characteristic hydroxyl substituents. Here, we aimed to isolate and characterize the enzyme that forms the alkylresorcinols accumulating in the cuticular wax on the surface of all above-ground organs of rye. Based on sequence homology with other type-III polyketide synthases, a candidate alkylresorcinol synthase was cloned. Yeast heterologous expression showed that the enzyme, ScARS, is highly specific for the formation of the aromatic resorcinol ring structure, through aldol condensation analogous to stilbene synthases. The enzyme accepts long-chain and very-long-chain acyl-CoA starter substrates, preferring saturated over unsaturated chains. It typically carries out three rounds of condensation with malonyl-CoA prior to cyclization, with only very minor activity for a fourth round of malonyl-CoA condensation and cyclization to 5-(2'-oxo)-alkylresorcinols or 5-(2'-hydroxy)-alkylresorcinols. Like other enzymes involved in cuticle formation, ScARS is localized to the endoplasmic reticulum. ScARS expression patterns were found correlated with alkylresorcinol accumulation during leaf development and across different rye organs. Overall, our results thus suggest that ScARS synthesizes the cuticular alkylresorcinols found on diverse rye organ surfaces.


Assuntos
Alquil e Aril Transferases/metabolismo , Fenóis/metabolismo , Epiderme Vegetal/metabolismo , Secale/enzimologia , Ceras/metabolismo , Genes de Plantas/genética , Filogenia , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase , Resorcinóis , Secale/genética , Secale/metabolismo , Alinhamento de Sequência
15.
Mol Plant ; 13(1): 144-156, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31733371

RESUMO

Two signal molecules, salicylic acid (SA) and N-hydroxypipecolic acid (NHP), play critical roles in plant immunity. The biosynthetic genes of both compounds are positively regulated by master immune-regulating transcription factors SARD1 and CBP60g. However, the relationship between the SA and NHP pathways is unclear. CALMODULIN-BINDING TRANSCRIPTION FACTOR 1 (CAMTA1), CAMTA2, and CAMTA3 are known redundant negative regulators of plant immunity, but the underlying mechanism also remains largely unknown. In this study, through chromatin immunoprecipitation and electrophoretic mobility shift assays, we uncovered that CBP60g is a direct target of CAMTA3, which also negatively regulates the expression of SARD1, presumably via an indirect effect. The autoimmunity of camta3-1 is suppressed by sard1 cbp60g double mutant as well as ald1 and fmo1, two single mutants defective in NHP biosynthesis. Interestingly, a suppressor screen conducted in the camta1/2/3 triple mutant background yielded various mutants blocking biosynthesis or signaling of either SA or NHP, leading to nearly complete suppression of the extreme autoimmunity of camta1/2/3, suggesting that the SA and NHP pathways can mutually amplify each other. Together, these results reveal that CAMTAs repress the biosynthesis of SA and NHP by modulating the expression of SARD1 and CBP60g, and that the SA and NHP pathways are coordinated to optimize plant immune response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/metabolismo , Ácidos Pipecólicos/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/metabolismo , Mutação , Imunidade Vegetal , Regiões Promotoras Genéticas , Transdução de Sinais
16.
Plant Biotechnol J ; 18(5): 1185-1199, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31646753

RESUMO

Tomato fruit ripening is controlled by the hormone ethylene and by a group of transcription factors, acting upstream of ethylene. During ripening, the linear carotene lycopene accumulates at the expense of cyclic carotenoids. Fruit-specific overexpression of LYCOPENE ß-CYCLASE (LCYb) resulted in increased ß-carotene (provitamin A) content. Unexpectedly, LCYb-overexpressing fruits also exhibited a diverse array of ripening phenotypes, including delayed softening and extended shelf life. These phenotypes were accompanied, at the biochemical level, by an increase in abscisic acid (ABA) content, decreased ethylene production, increased density of cell wall material containing linear pectins with a low degree of methylation, and a thicker cuticle with a higher content of cutin monomers and triterpenoids. The levels of several primary metabolites and phenylpropanoid compounds were also altered in the transgenic fruits, which could be attributed to delayed fruit ripening and/or to ABA. Network correlation analysis and pharmacological experiments with the ABA biosynthesis inhibitor, abamine, indicated that altered ABA levels were a direct effect of the increased ß-carotene content and were in turn responsible for the extended shelf life phenotype. Thus, manipulation of ß-carotene levels results in an improvement not only of the nutritional value of tomato fruits, but also of their shelf life.


Assuntos
Solanum lycopersicum , Ácido Abscísico , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno
17.
Plant Cell Environ ; 42(11): 3077-3091, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31306498

RESUMO

To protect above-ground plant organs from excessive water loss, their surfaces are coated by waxes. The genes involved in wax formation have been investigated in detail in Arabidopsis but scarcely in crop species. Here, we aimed to isolate and characterize a CER1 enzyme responsible for formation of the very long-chain alkanes present in high concentrations especially during late stages of wheat development. On the basis of comparative wax and transcriptome analyses of various wheat organs, we selected TaCER1-1A as a primary candidate and demonstrated that it was located to the endoplasmic reticulum, the subcellular compartment for wax biosynthesis. A wheat nullisomic-tetrasomic substitution line lacking TaCER1-1A had significantly reduced amounts of C33 alkane, whereas rice plants overexpressing TaCER1-1A showed substantial increases of C25 -C33 alkanes relative to wild type control. Similarly, heterologous expression of TaCER1-1A in Arabidopsis wild type and the cer1 mutant resulted in increased levels of unbranched alkanes, iso-branched alkanes and alkenes. Finally, the expression of TaCER1-1A was found activated by abiotic stresses and abscisic acid treatment, resulting in increased production of alkanes in wheat. Taken together, our results demonstrate that TaCER1-1A plays an important role in wheat wax alkane biosynthesis and involved in responding to drought and other environmental stresses.


Assuntos
Alcanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Triticum/genética , Triticum/metabolismo , Ceras/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Permeabilidade , Folhas de Planta/metabolismo , Poliploidia , Alinhamento de Sequência , Análise de Sequência
18.
Plant Physiol Biochem ; 139: 102-112, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30884413

RESUMO

Cuticular waxes cover the plant surface and serve as hydrophobic layer, exhibiting various wax profiles between plant species and plant organs. This paper reports comprehensive analysis of the waxes on organs exposed to air, including leaf, stem, pod pericarp, and petals (banner, wing and keel), and on seed coat enwrapped in pod pericarp of faba bean (Vicia faba). In total 7 classes of wax compounds were identified, including fatty acids, primary alcohols, alkyl esters, aldehydes, alkanes, cinnamyl alcohol esters, and alkylresorcinols. Overall, primary alcohols dominated the waxes on leaves and the seed coat enwrapped in pod pericarp, alkanes accumulated largely in stem and petals, whereas alkylresorcinols were observed in leaf, stem and pod pericarp. Organs exposed to air had higher coverage (>1.2 µg/cm2) than those on seed coat (<0.8 µg/cm2), and keel having the highest wax coverage. Meanwhile, the wax coverage on seed coat reduced during the seed development. The variations of wax coverages, compound class distributions and chain length profiles among organs suggested that wax depositions were associated with their ecophysiological functions, and the enzymes involved in wax biosynthesis also showed organ-specific.


Assuntos
Epiderme Vegetal/metabolismo , Vicia faba/metabolismo , Ceras/metabolismo , Flores/metabolismo , Microscopia Eletrônica de Varredura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Vicia faba/ultraestrutura
19.
Plant J ; 98(5): 842-852, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30739357

RESUMO

In plants, the calmodulin-binding transcription activators (CAMTAs) are required for transcriptional regulation of abiotic and biotic stress responses. Among them, CAMTA3 in Arabidopsis has been intensively studied and shown to function redundantly with CAMTA1 and CAMTA2 to negatively regulate plant immunity. The camta1/2/3 triple mutant accordingly exhibits severe dwarfism due to autoimmunity. Here, through a suppressor screen using camta1/2/3 triple mutant, we found that a mutation in Cyclin-Dependent Kinase 8 (CDK8) partially suppresses the dwarfism and constitutive resistance phenotypes of camta1/2/3. CDK8 positively regulates steady-state salicylic acid (SA) levels and systemic required resistance (SAR). The expression of SA biosynthesis genes such as ICS1 and EDS5 is down-regulated in cdk8 mutants under uninfected conditions, suggesting that CDK8 contributes to the transcriptional regulation of these SA pathway genes. Knocking out another Mediator kinase module member MED12 yielded similar defects including decreased steady-state SA level and compromised SAR, suggesting that the whole Mediator kinase module contributes to the transcriptional regulation of SA levels and SAR.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Quinase 8 Dependente de Ciclina/genética , Resistência à Doença/genética , Mutação , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudomonas syringae/fisiologia , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Ann Bot ; 122(4): 555-568, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30252045

RESUMO

Background and Aims: The cuticular waxes sealing plant surfaces against excessive water loss are complex mixtures of very-long-chain aliphatics, with compositions that vary widely between plant species. To help fill the gap in our knowledge about waxes of non-flowering plant taxa, and thus about the cuticle of ancestral land plants, this study provides comprehensive analyses of waxes on temperate fern species from five different families. Methods: The wax mixtures on fronds of Pteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris were analysed using gas chromatography-mass spectrometry for identification, and gas chromatography-flame ionization detection for quantification. Key Results: The wax mixtures from all five fern species contained large amounts of C36-C54 alkyl esters, with species-specific homologue distributions. They were accompanied by minor amounts of fatty acids, primary alcohols, aldehydes and/or alkanes, whose chain length profiles also varied widely between species. In the frond wax of G. dryopteris, C27-C33 secondary alcohols and C27-C35 ketones with functional groups exclusively on even-numbered carbons (C-10 to C-16) were identified; these are characteristic structures similar to secondary alcohols and ketones in moss, gymnosperm and basal angiosperm waxes. The ferns had total wax amounts varying from 3.9 µg cm-2 on P. glycyrrhiza to 16.9 µg cm-2 on G. dryopteris, thus spanning a range comparable with that on leaves of flowering plants. Conclusions: The characteristic compound class compositions indicate that all five fern species contain the full complement of wax biosynthesis enzymes previously described for the angiosperm arabidopsis. Based on the isomer profiles, we predict that each fern species, in contrast to arabidopsis, has multiple ester synthase enzymes, each with unique substrate specificities.


Assuntos
Gleiquênias/química , Ceras/química , Álcoois/química , Arabidopsis/química , Ésteres/química , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Epiderme Vegetal/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA